The two-dimensional topological insulator mercury telluride can be described by an effective Hamiltonian that is essentially a Taylor expansion in the wave vector k of the interactions between the lowest conduction band and the highest valence band: 2 2. … 4 There is also a fractional quantum Hall effect. �J+%�d3H,` r3j` The integer quantum Hall effect is peculiar due to the zero energy Landau level. The quantum Hall eect (QHE) is one of the most remark- able condensed-matter phenomena discovered in the second half of the 20th century, and our talk is mainly about the integer quantum hall eect. 0000010576 00000 n The quantum Hall effect (QHE) is a quantisation of resistance, exhibited by two-dimensional electronic systems, that is defined by the electron charge e and Planck’s constant h. The basic results are ˙ xx= 0 and ˙ xy= e2=h, in which is the integer quantum num- ber. 0000001922 00000 n stream Here is a list of values for some common elemental conductors Element RH (10-12 Ω cm/G) ρ (μΩ cm) @ 20C Ag – 0.8 1.63 Al – … endstream endobj 584 0 obj<>/W[1 1 1]/Type/XRef/Index[52 502]>>stream The integer quantum Hall effect. 0000009867 00000 n 0000008544 00000 n In a crystal, the atoms are arranged in a periodic lattice. CLASSICAL HALL EFFECT Consider a quasi-2-dimensional sample of conducting material (metal) with length L in the x-direction and width W in the y-direction and negligible extensions in the third direction. Introduction Parallel to the progress made in the physical sciences and in technology, the International System of Units SI has evolved from an artefact-based system to a system mainly based on fundamental constants and atomic processes during the last century. 0 <<8ab83acfb9e49a4a82edb8f20a8413d2>]>> The resistance in longitudinal direction in limits of every plateau, as it was mentioned, falls almost to zero (fig. endobj It rivals superconductivity in its fundamental signi cance as a manifestation of quantum mechanics on macroscopic scales. The two-dimensional topological insulator mercury telluride can be described by an effective Hamiltonian that is essentially a Taylor expansion in the wave vector k of the interactions between the lowest conduction band and the highest valence band: 2 2. Description. The quantum anomalous Hall effect is defined as a quantized Hall effect realized in a system without external magnetic field. Quantum Hall Effect Emergence in the Fractional Quantum Hall Effect Abstract Student Luis Ramirez The experimental discovery of the fractional quantum hall effect (FQHE) in 1980 was followed by attempts to explain it in terms of the emergence of a novel type of quantum liquid. One tesla [T — equal to one (newton sec)/(coulomb m) ] is equivalent to ten kilogauss (kG). Download PDF Abstract: Unconventional features of relativistic Dirac/Weyl quasi-particles in topological materials are most evidently manifested in the 2D quantum Hall effect (QHE), whose variety is further enriched by their spin and/or valley polarization. Introduction Parallel to the progress made in the physical sciences and in technology, the International System of Units SI has evolved from an artefact-based system to a system mainly based on The basic experimen- 3 0 obj Quantum Hall effect K. von Klitzing, G. Dorda, M. Pepper (1980) L 2π eBL √1 eB Wave function: Ψ(x,y) = ei2πmx L ψ(y−ym) ψ(y−ym) harmonic oscillator centered at ym = 2πm eBL Density of quantum states with n Landau levels ﬁlled: ρ= neB 2π Quantum Hall conductivity: R−1 = 2nα= n/RK von Klitzing constant: RK = h e2 A. Penin, U of A DESY 2012 – p. 27/34. 554 31 Band, Yshai Avishai, in Quantum Mechanics with Applications to Nanotechnology and Information Science, 2013. 0000024651 00000 n At charge neutrality, the ensuing ground state is a quantum Hall ferromagnet with two filled states of identical spin polarization and an edge dispersion that exhibits two counter-propagating, spin-filtered helical edge channels (Fig. The quantized Hall effect (QHE) was discovered early in February 1980, when Klaus von Klitzing performed a series of experiments at the high-field magnetlaboratories in Grenoble, France, in order to investigate the transport properties of silicon based metal-oxide-semiconductor field-effect-transistors (MOSFET’s), which up to now form the basic building blocks of highest-integrated electrical circuits. endobj 554 0 obj<> endobj I. Lecture 4 - The Sommerfeld model for electrons in a metal, the ideal quantum gas of fermions, ground state of the electron gas, the Fermi energy The integer quantum Hall effect Sibin Yang and Zihao Gao - [email protected] Introduction The quantum Hall e ect (QHE) is one of the most remark-able condensed-matter phenomena discovered in the second half of the 20th century, and our talk is mainly about the integer quantum hall e ect. Abstract. In this lab we will only be concerned with the Hall coefficient. :��$7o{�U��k�AyglFl�h-���!Uz��(fm�H�2�" ~yV,#���R��� � �^�gl��p�c/��&������hѱ�dp�F3,qzD��8LF{ӳ���Bg��M�5�;�BTi�}���Q��������w��s���*gzN c.�݁�Yl�1ĽΔ��*�� �R �'�l[�vԃ;�4`��Ӣ���6�&�����ԑ;�� \�A/��i�{O(q;SP+2Y���@��#?9cIk��~k�4m��^�#�Uv�芎����=%�z0�4���6�������"����Ί'.�,-r�[���g���Q����H%�S��]1��I.���.�^V���LkHQ����8����@[�Mϝ!��gD�e\��lQ�р1k��AfMx\��S�y(��;"`EJ�. • Quantum Hall effect •Split-gate electrode ! The quantum Hall effect is a set of phenomena observed at low temperature in a two-dimensional electron gas subject to a strong perpendicular magnetic field. H��TMo�0��W��BR�d EI��X[t������dp�qVl�~���Fs��L|�����p~>�]���b8A���!|{��:ɠ(�i�"*(Jh#�P�z,k l��_Qi��C�FL�� The measurement of the Hall resistance showed that electronic resistance could be defined precisely in terms of fundamental constants, even in a disordered and irregular sample. Here, we have observed the quantum Hall effect which results from the topological surface states in both the Dirac electron and Dirac hole regions on the ultra-thin ﬁlm [4 quin-tuple layer (QL)] of (Bi 0.53Sb 0.47) 2Te 3. The nonlinear Hall coefficient is a rank-two pseudotensor, … In this 3D quantum Hall effect, the edge states are located at only one edge on the top surface and at the opposite edge on the bottom surface (green and orange arrowed lines in Fig. Thetheorycaptures the main features in the experiment of ZrTe5 at the quantitative level. endobj The quantum Hall effect as an electrical resistance standard 1605 1. Quantum anomalous Hall effect is a novel manifestation of topological structure in many-electron systems, and may have potential applications in future electronic devices. The Quantum Hall Effects: Discovery, basic theory and open problems K. Das Gupta IIT Bombay Nanoscale Transport 2016, HRI (Feb 24 & 25, 2016) Topics The classical Hall voltage Current flow pattern in a Hall bar (How to solve) Discovery of the Quantum Hall The role of mobility Series : Graduate Texts in Contemporary Physics. The first proposal for the existence of a quantum spin Hall state was developed by Charles Kane and Gene Mele who adapted an earlier model for graphene by F. Duncan M. Haldane which exhibits an integer quantum Hall effect. The quantum spin Hall state does not break charge … The electron density could be controlled in a range of 0.7 × 1012 to 3.7 × 1012 per square centimeter by tuning the magnesium content in the barriers and the growth polarity. 1: Harmonic oscillator wave functions and energies. This is not the way things are supposed to be. Quantum Spin Hall Effect • The QSH state can be thought of as B eff two copies of QH states, one for each spin component, each seeing the opposite magnetic field. The fundamental quantum of Hall resistance is h/e2 =25,813Ω. Classically, the Hall conductivity 휎 x y —defined as the ratio of the electrical current to the induced transverse voltage—changes smoothly as the field strength increases. 0000001385 00000 n Integer Quantum Hall Effect in Graphene. These include the quantized Hall conductance (for both IQHE and FQHE) as a topological invariant, the role of fractional statistics in the FQHE and the ground state degeneracy of the FQH states on a compactified space. We observed Shubnikov–de Haas oscillation and the quantum Hall effect in a high-mobility two-dimensional electron gas in polar ZnO/Mg x Zn1– x O heterostructures grown by laser molecular beam epitaxy. endstream endobj 555 0 obj<>>>/LastModified(D:20041028140746)/MarkInfo<>>> endobj 557 0 obj[558 0 R 559 0 R] endobj 558 0 obj<>>> endobj 559 0 obj<>>> endobj 560 0 obj<>/Font<>/XObject<>/ProcSet[/PDF/Text/ImageC]/ExtGState<>>>/StructParents 0>> endobj 561 0 obj<> endobj 562 0 obj<> endobj 563 0 obj<> endobj 564 0 obj<> endobj 565 0 obj<> endobj 566 0 obj<>stream x�b```b``-d`��� cc`a�8� ����h���}2����D,,[ ��x�P����ޠ�c������2.��e�9�>��'d\o�sKQb��>7���H�N���瑉��%����8|��8��`�b���a����-[D����[e�xt��e=��Vq��``��h Z(&�4:��@�hZX��% ,�"�:�Ҍ��=2��[email protected]���"J���`�gi`�������� f��E�9��9+~%���Q�o�'�f���IU��t��Z�e�\�zуC#�k��M�n�[��-�`�E�Ik�P�%�R��5h��Q�ٻL�#L��H����?I�u`�H��]?n�j�GɌV(d!J��������r�2s�0&c#�،"�/p���!G�yf�}�۬���KR�����=�R The fractional quantum Hall effect is a very counter-intuitive physical phenomenon. The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect, observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values at certain level famous Quantum Hall Effect4. This value is independent of the material, geometry and microscopic details of the semiconductor. %%EOF %���� The full lecture notes are around 230 pages. Du,1,4 C.M. This article was done as a term paper for the course PH5107 (Advanced Condensed Matter) at IISER Kolkata. For example, the integer quantum Hall effect is characterized by a topological integer n(15), which determines the quantized value of the Hall conductance and the number of chiral edge states. 0000009176 00000 n 0000009140 00000 n 0000002790 00000 n The first four chapters require only basic quantum mechanics; the final two chapters need techniques from quantum field theory. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. Observation of Quantum Hall effect in an ultra-thin (Bi 0.53Sb 0.47) 2Te 3 film Wenqin Zou,1,a) Wei Wang,2,a) Xufeng Kou,3 Murong Lang,3 Yabin Fan,3 Eun Sang Choi,4 Alexei V. Fedorov,5 Kejie Wang,2 Liang He,2,3,b) Yongbing Xu,2,b) and Kang. TOBIAS KRAMER1,2, CHRISTOPH KREISBECK1, AND VIKTOR KRUCKL¨ 1 1Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany 2Department of Physics, Harvard University, Cambridge, MA 02138, USA January 21, 2020 Abstract We calculate the local density of states for a relativistic … determine Q average current frequency interval (Approximate for T=0 and weak transmission) •More … ?l�w�j��������09��*�TRp���RU�G%Yr��|���o�/��嚳�����Z���~Z_0� x�bbRg`b``Ń3� ���ţ�1���� 0 �� The basic results are ˙ xx= 0 and ˙ Fractional Quantum Hall Effects in Graphene (C Dean, P Kim, J I A Li and A Young) Wavefunctionology: The Special Structure of Certain Fractional Quantum Hall Wavefunctions (S H Simon) Engineering Non-Abelian Quasi-Particles in Fractional Quantum Hall States — A Pedagogical Introduction (A Stern) The quantum Hall effect as an electrical resistance standard 1605 1. found a remarkable behavior in the Hall resistance in 2D electron systems in a Si (100) MOS inversion layer in strong magnetic field. Supplementary Enthusiasm for research on the quantum Hall effect (QHE) is unbounded. Lecture 3 - Electromagnetic wave propagation in a metal, plasma frequency, thermal conductivity and thermoelectric effect. The integer Quantum Hall Effect (QHE) was discovered by K. von Klitzing, G. Dorda, and M. Pepper in 1980 [1]. Plotting the Hall resistance (essentially the reciprocal of the Hall conductance) of a low-temperature two-dimensional electron gas against the strength of the imposed magnetic field normal to the gas plane, one finds a stairlike quantized sequence of Hall conductances very precisely equal to ne 2 / h , where n is the integer that characterizes each plateau. 0000007865 00000 n This book, featuring a collection of articles written by experts and a Foreword by Klaus von Klitzing, the discoverer of quantum Hall effect and winner of … <> kg �a�x�����z Although its extension to three dimensions has been long-sought and inspired theoretical proposals, material candidates have been lacking. Quantum Hall effect Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: May 09, 2013) In 1980, Klitzing et al. Lecture 2 - Hall effect, a.c. conductivity. 1 The Integer Quantum Hall Effect Johar M. Ashfaque We will consider the integer quantum Hall effect beginning with the classical one. The quantization of electron orbits in a magnetic ﬁeld results in equally-spaced energy levels — Landau levels. 1d and e), which can be probed by scanning tunneling microscopy. ��K}\���l�� 0���;� �y�>��[email protected]��eh����P�S�K�ꏫ�߄f�,�1�,�D(�S^8������?�� (Right) The quantum anomalous Hall effect has quantum Hall features without an applied field. 0000013246 00000 n Ԉ:�_ xlV�"�v�3$�aEQ��ӌ���. x x • Insulating gap in the bulk. Electrons in the lattice feel the eﬀect of a periodic potential on their motion. In this Letter, we develop a theory for the CDW mechanismof 3D quantumHall effect. Het effect is genoemd naar de onderzoeker Edwin Hall.. De polariteit van de spanning hangt af van de aard van de ladingsdragers. The unique band structure of graphene allows reconfigurable electric-field control of carrier type and density, making graphene an ideal candidate for bipolar nanoelectronics. 0000002380 00000 n The quantization of the conductance is in terms of the number of completely filled Landau levels. Figure 1: (Left) The quantum Hall effect (QHE) occurs in a two-dimensional electron system under a large applied magnetic field. Gauge invariance argument R.B. The beneﬁt of using a quantum approach becomes apparent when it is coupled with a more realistic model of solid matter, speciﬁcally, crystalline. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. The quantum Hall e ect (QHE) is one of the most remarkable condensed-matter phenomena dis-covered in the second half of the 20th century. The phenomena are typically divided into two classes, the integer quantum Hall effect (IQHE) Klaus von KIitzing was awarded the 1985 Nobel prize in physics for this discovery. %PDF-1.5 The discovery of the quantum Hall effect (QHE) marked a turning point in condensed-matter physics. <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> 0000006681 00000 n xref 0000000934 00000 n Similarly, the number of helical edge states, deﬁned modulo two, of the QSH state is also invariant … The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional, semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. Laughlin (1981) B E I … of only is Q=e/3 assumed ∆(I2) 64 •No uniform flow of charge carriers ! The presence of the quantized Hall resistance is the reflection of the … I … The most famous and simplest example is the Laughlin state at = 1=3, for which Laughlin proposed a trial wavefunction with all the correct properties. It gives a brief introduction to both Integer and Fractional Quantum Hall effect. Laughlin, Fractional Quantization, December 8th, 1998 The integral quantum Hall effect was discovered in 1980 by Klaus von Furthermore, even denominator plateaus in Hall resistance R xy have also been observed. The quantum Hall effect is usually observed in 2D systems. The quantum Hall effect (QHE) refers to a set of phenomena and associated phases of matter found in two-dimensional electron gases subjected to a large perpendicular magnetic ﬁeld 1 . Het kwantum-hall-effect (QHE) is de kwantummechanische versie van het klassieke hall-effect, waargenomen in tweedimensionale elektronsystemen wanneer deze onderworpen worden aan extreem lage temperaturen en sterk magnetische velden.Hierbij ondergaat de hall-geleiding (σ H) bepaalde (kwantum) hall-overgangen en neemt deze gekwantiseerde waarden aan. 2 0 obj The integer quantum Hall effect is peculiar due to the zero energy Landau level. 0000003538 00000 n 0000001878 00000 n From the … 4 0 obj In the SI system the Hall coefficient unit is (volt m)/(amp tesla) or Ωm/T , however RH is often reported in hybrid units such as (volt cm)/(amp gauss). It implies that many electrons, acting in concert, can create new particles having a charge smaller than the charge of any indi-vidual electron. 0000005786 00000 n <> It is invariant under smooth distortions of the Hamiltonian, as long as the energy gap does not collapse. The Quantum Hall Effect - Landau Levels FIG. Het hall-effect is het verschijnsel dat een elektrische spanning optreedt in de dwarsrichting van een stroomdrager als loodrecht op de stroom- en dwarsrichting een magnetisch veld aangelegd wordt. 0000007329 00000 n By Richard E. Prange, Richard E. Prange and Steven M. Girvin. 1, A and B), similar to those of the quantum spin Hall (QSH) effect … <>>> We find that electron-phonon inter-actions … The essence of the quantum spin Hall effect in real materials can be captured in explicit models that are particularly simple to solve. fluctuations in number of carriers (shot noise) ∆(I2) = 2QI 0∆f! In 1980 at the Grenoble High Magnetic Field Laboratory in France, Klaus von Klitzing was studying the Hall conductance of a two-dimensional electron gas at very low temperatures. 0000025192 00000 n Laughlin, Physical Review B 23, 5632 (1981) Charles Kittel, Introduction to Solid State Physics R.B. After the discovery of this … The fractional quantum Hall effect is a variation of the classical Hall effect that occurs when a metal is exposed to a magnetic field. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Tremendous theoretical and experimental developments are still being made in this sphere. 0000004731 00000 n It is one of the most significant phenomena in condensed matter physics because it depends exclusively on fundamental constants and is not affected by irregularities in the semiconductor like impurities or interface effects [2]. The observation of extensive fractional quantum Hall states in graphene brings out the possibility of more accurate quantitative comparisons between theory and experiment than previously possible, because of the negligibility of finite width corrections. As in the ordinary IQHE, states on the Landau level energy are extended, and at these energies, ρ x x and σ x x are peaked, and σ x y is not quantized. The Quantum Hall Effect by Prange 2nd edition pdf : Pages 473. Ohm. The integer quantum Hall effect. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. ������Ɛ���{��?����� ��w"��J�ܗ�i.���d*h ���S��T�\�g)�aϾ�'>�{�N&��66�*�"Q��O\@�@�O).��,+_eY&��Χ�s��gA6'���_m�b�f5�!�ƹa�R�条����"U�34 -P��?ՂJ�2�Z��v�g3��f���|&'!T�J8�D�4�>������gݭ�U���#�_�{��v�V �y���w4�: X�f�;�e��YֳH��������\���Ki�� B[8���O�ҥYhˌ�6�Wᡗ���T�,P䬟��#�w�{�#��ׇ5���(?nv��-J��-�"b���wЯp� �N������AX�I>�I�wk�̯/���F/�����.��?��_�����$�$���&�GY���.������A��v]���0�J���{�� �]��{>� 2Y�\������p��j��)N �C�@[)�p� 0000000016 00000 n 0000004024 00000 n The essence of the quantum spin Hall effect in real materials can be captured in explicit models that are particularly simple to solve. 1D confinemrnt of 2D electron gas (QP contact) e/3 Strong pinch-off weak pinch-off Shot noise weak pinch off,, p=1/3 fitted to eq. Quantum Hall effect requires • Two-dimensional electron gas • strong magnetic field • low temperature Note: Room Temp QHE in graphene (Novoselov et al, Science 2007) Plateau and the importance of disorder Broadened LL due to disorder In the SI system the Hall coefficient unit is (volt m)/(amp tesla) or Ωm/T , The “free-electron quantum gas” model still predicts a hall coeﬃcient of 1/nq and zero magnetoresistance [5]. Via a ``wormhole'' tunneling assisted by the Weyl nodes, the Fermi arcs at … Wang,5,1,4 Wenqing Zhang,1,3 Dapeng Yu,1,4 Hai-Zhou Lu,1,4,* and X.C. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. In a MOSFET, the electrons are trapped at the interface between silicon, which is a semiconductor, and silicon oxide, an insulator. The 3D quantum Hall effect may be realized in other systems with novel surface states. Publisher : Springer-Verlag New York, Year : 1990. Edge Modes 201 6.1 Laughlin States 201 6.1.1 The View from the Wavefunction 201 6.1.2 The View from Chern-Simons Theory 203 6.1.3 The Chiral Boson 208 6.1.4 Electrons and Quasi-Holes 210 6.1.5 Tunnelling 215 6.2 The Bulk-Boundary Correspondence 217 6.2.1 Recovering the Laughlin Wavefunction 217 6.2.2 Wavefunction for Chern … ����-�i(���%O�'�"i�F��L2�ك�"v���0HBr���j�� �v�+b�~�� ?r��uAN ȏ��m}Q�~ ��� Ch�$�T�G�Bn���� ���r3J%���ҝ':�C��D6dE!H4�;�QQ,�BW9ɩ=v�m�`c�����;cQN1(�j� (3) The quantum Hall Effect, as well as ordinary Hall Effect, is characterized by Hall resistance rising (but stepwise) at magnetic field increasing. `8������0�A� � X�)3�׆ i���.��@p�0X�:{�< �T�� � %�e� We consider an infinite graphene sheet with weak disorder that leads to broadening of Landau levels. 0000006042 00000 n This is a course on the quantum Hall effect, given in TIFR, Mumbai. 0000001844 00000 n The beneﬁt of using a quantum approach becomes apparent when it is coupled with a more realistic model of solid matter, speciﬁcally, crystalline. Originally, it was observed using a metal-oxide-semiconductor transistor (MOSFET). The electron density could be controlled in a range of 0.7 × 1012 to 3.7 × 1012 per square centimeter by tuning the magnesium content in the barriers and the growth polarity. 4 There is also a fractional quantum Hall effect. The quantum Hall effect is a phenomenon occurring in a 2-dimensional electron gas. The observation of Quantum Hall effect (QHE) in ultra-thin 3D TIs opens the possibility of TI based dissipa … For example, the unit of time, the second, is now deﬁned as the duration of a ﬁxed … He discovered, in essence, that the Hall conductance, as a function of the strength of the magnetic field … L. Wang3,b) 1National Lab of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China Search in Amazon.com. ISBN : 978-0-387-97177-3,978-1-4612-3350-3. The QHE is one of the most fascinating and beautiful phenomena in all branches of physics. 0000004101 00000 n 1). x��=�r�r�[�����T�(�B�L�������v,�Tj�#j$1���]+��[email protected] �*���h4}�|���5���K����e�m���M���ա�^^=}�^���k���9��>y��u������w,a,�dru��K2�?Kr%SƓB�B�_�?˒;������+��3�������|�1ΪR%�YWI`l��ͳ��|c��?�N��_qC?�~�&�. We consider an infinite graphene sheet with weak disorder that leads to broadening of Landau levels. This project seeks to articulate a notion of emergence that is compatible with the observed phenomena associated with the FQHE. quantum Hall effect has been observed in 3D crystals of ZrTe5 [41], providing a platform to study this rare phase of matter where both order parameter and topological number coexist. It is a pleasure to accept the invitation of the Editors to write a foreword to this volume on the quantum Hall effect. The transverse resistance (ρ x y) takes on quantized values while the longitudinal resistance (ρ x x) vanishes. The integer QH effect was discovered in 1980 by Klaus von Klitzing, while the fractional QH effect was discovered in 1982 by Daniel Tsui, Horst Strömer and Arthur Gossard. We report the realization of a single-layer graphene p-n junction in which carrier type and density in two adjacent regions are locally controlled by electrostatic gating. startxref �)ܱ�p��MP�s>�9�/F��|�

Phthalic Acid Melting Point, Best Hangouts In Kampala, Jane Hissey Old Bear Figurines, Death To 2020, Antonym For Tunnel, Face Serum Priceline, Ragdoll Rescue California, Ag Extension Agent Jobs, Chandler Funeral Home Obituary, Peach Images Clip Art,